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Objective Functions `(x)

Let `(x) be a real-valued function (aka functional) of an n-dimensional real vector
x ∈ X = Rn

`(·) : X = Rn → V = R
where X is an n-dimensional real Hilbert space with metric matrix Ω = ΩT > 0. Note
that henceforth vectors in X are represented as column vectors in Rn. Because here the
value space Y = R is one-dimensional, wlog we can take V to be Cartesian (because all
(necessarily positive scalar) metric weightings yield inner products and norms that are
equivalent up to an overall positive scaling).

We will call `(x) an objective function. If `(x) is a cost, loss, or penalty function,
then we assume that it is bounded from below and we attempt to minimize it wrt x . If
`(x) is a profit, gain, or reward function, then we assume that it is bounded from
above and we attempt to maximize it wrt x .

For example, suppose we wish to match a model pdf px(y) to a true, but unknown,
density px0 (y) for an observed random vector, where we assume px(y) ≤ px0 (y), ∀x .
We can then use a penalty function of x to be given by a measure of (non-averaged or
instantaneous) divergence or discrepancy DI (x0‖x) of the model pdf px(y) from the
true pdf px0 (y) defined by

DI (x0‖x) , log

(
px0 (y)

px(y)

)
= log px0 (y)− log px(y)
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Instantaneous Divergence & Negative Log-likelihood

Note that minimizing the instantaneous divergence DI (x0‖x) is equivalent to maximizing
the log-likelihood px(y) or minimizing the negative log-likelihood

`(x) = − log px(y)

A special case arises from use of the nonlinear Gaussian additive noise model with known
noise covariance C and known mean function h(·)

y = h(x) + n, n ∼ N(0,C) ⇐⇒ y ∼ N(h(x),C)

which yields the nonlinear weighted least-squares problem

`(x) = − log px(y)
.

= ‖y − h(x)‖2
W , W = C−1

Further setting h(x) = Ax is the linear weighted least-squares problem we have already
discussed

`(x) = − log px(y)
.

= ‖y − Ax‖2
W , W = C−1

The symbol “
.

=” denotes that fact that we are ignoring additive terms and multiplicative
factors which are irrelevant for the purposes of obtaining a extremum (here, a minimum)
of a loss function. Of course we cannot ignore these terms if we are interested in the
actual optimal value of the loss function itself.
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Stationary Points and the Vector Partial Derivative

Henceforth let the real scalar function `(x) be twice partial differentiable with respect to
all components of x ∈ Rn. A necessary condition for x be be a local extremum
(maximum or minimum) of `(x) is that

∂

∂x
`(x) ,

(
∂`(x)

∂x1
. . .

∂`(x)

∂xn

)
︸ ︷︷ ︸

1×n

= 0

where the vector partial derivative operator

∂

∂x
,

(
∂

∂x1
. . .

∂

∂xn

)
is defined as a row operator. (See the extensive discussion in the Lecture Supplement on
Real Vector Derivatives.)

A vector x0 for which ∂
∂x
`(x0) = 0 is known as a stationary point of `(x). Stationary

points are points at which `(x) has a local maximum, minimum, or inflection.

Sufficient conditions for a stationary point to be a local extremum require that we
develop a theory of vector differentiation that will allow us to clearly and succinctly
discuss second-order derivative properties of objective functions.
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Derivative of a Vector-Valued Function – The Jacobian

Let f (x) ∈ Rm have elements fi (x), i = 1, · · · ,m, which are all differentiable with
respect to the components of x ∈ Rn.

We define the vector partial derivative of the vector function f (x) as

Jf (x) ,
∂

∂x
f (x) ,


∂
∂x f1(x)

...
∂
∂x fm(x)

 =


∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

...
. . .

...
∂fm(x)
∂x1

· · · ∂fm(x)
∂xn


︸ ︷︷ ︸

m×n

The matrix Jf (x) = ∂
∂x f (x) is known as the Jacobian matrix (or operator) of

the mapping f (x). It is the linearization of the nonlinear mapping f (x) at the
point x . Often we write y = f (x) and the corresponding Jacobian as Jy (x).

If m = n and f (x) is invertible, then y = f (x) can be viewed as a change of
variables, in which case det Jy (x) is the Jacobian of the transformation. The
Jacobian, det Jy (x), plays a fundamental role in the change of variable formulae of
pdf’s and multivariate integrals.
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The Jacobian – Cont.

A function f : Rn → Rm is locally one-to-one in an open neighborhood of x
if and only if its Jacobian (linearization) Jf (ξ) = ∂

∂x f (ξ) is a one-to-one
matrix for all points ξ ∈ Rn in the open neighborhood of x .

A function f : Rn → Rm is locally onto an open neighborhood of y = f (x) if
and only if its Jacobian (linearization) Jf (ξ) = ∂

∂x f (ξ) is an onto matrix for
all points ξ ∈ Rn in the corresponding neighborhood of x .

A function f : Rn → Rm is locally invertible in an open neighborhood of x if
and only if it is locally one-to-one and onto in the open neighborhood of x
which is true if and only if its Jacobian (linearization) Jf (ξ) = ∂

∂x f (ξ) is a
one-to-one and onto (and hence invertible) matrix for all points ξ ∈ Rn in the
open neighborhood of x . This is known as the Inverse Function Theorem.
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Vector Derivative Identities

∂ cT x

∂x
= cT for an arbitrary vector c

∂ Ax

∂x
= A for an arbitrary matrix A

∂ gT (x)h(x)

∂x
= gT (x)

∂ h(x)

∂x
+ hT (x)

∂ g(x)

∂x
, g(x)Th(x) scalar

∂xTAx

∂x
= xTA + xTAT for an arbitrary matrix A

∂xTΩx

∂x
= 2xTΩ when Ω = ΩT

∂h(g(x))

∂x
=

∂h

∂g

∂g

∂x
(Chain Rule)

Note that the last identity) is a statement about Jacobians and can be restated in an
illuminating manner as

Jh◦g = Jh Jg (1)

I.e., “the linearization of a composition is the composition of the linearizations.”
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Application to Linear Gaussian Model

Stationary points of

`(x) = − log px(y)
.

= ‖e(x)‖2
W where e(x) = y − Ax and W = C−1

satisfy

0 =
∂`

∂x
=
∂`

∂e

∂e

∂x
= (2eTW )(−A) = −2(y − Ax)TWA

or

ATW (y − Ax) = 0 ⇐⇒ e(x) = y − Ax ∈ N (A∗) with A∗ = Ω−1ATW

Therefore stationary points satisfy the Normal Equation

ATWAx = ATWy ⇐⇒ A∗Ax = A∗y

Ken Kreutz-Delgado (UC San Diego) ECE 174 December 4, 2016 8 / 25



The Hessian of an Objective Function

The Hessian, or matrix of second partial derivatives of `(x), is defined by

H(x) =
∂2`(x)

∂2x
,
∂

∂x

(
∂

∂x
`(x)

)T

=


∂`(x)
∂x1∂x1

· · · ∂`(x)
∂xn∂x1

...
. . .

...
∂`(x)
∂x1∂xn

· · · ∂`(x)
∂xn∂xn


︸ ︷︷ ︸

n×n

As a consequence of the fact that

∂`(x)

∂xi∂xj
=

∂`(x)

∂xj∂xi

the Hessian is obviously symmetric

H(x) = HT (x)
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Vector Taylor Series Expansion

Taylor series expansion of a scalar-valued function `(x) about a point x0 to
second-order in ∆x = x − x0:

`(x0 + ∆x) = `(x0) +
∂`(x0)

∂x
∆x +

1

2
∆xTH(x0)∆x + h.o.t.

where H is the Hessian of `(x).

Taylor series expansion of a vector-valued function h(x) about a point x0 to
first-order in ∆x = x − x0:

h(x) = h(x0 + ∆x) = h(x0) +
∂h(x0)

∂x
∆x + h.o.t.

To obtain notationally uncluttered expressions for higher order expansions, one
switches to the use of tensor notation.
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Sufficient Condition for an Extremum

Let x0 be a stationary point of `(x), ∂`(x0)
∂x

= 0. Then from the second-order expansion of
`(x) about x0 we have

∆`(x) = `(x)− `(x0) ≈ 1

2
(x − x0)TH(x0)(x − x0) =

1

2
∆xTH(x0)∆x

assuming that ∆x = x − x0 is small enough in norm so that higher order terms in the
expansion can be neglected. (That is, we consider only local excursions away from x0.)

We see that If the Hessian is positive definite, then all local excursions of x away from x0

increase the value of `(x) and thus

Suff. Cond. for Stationary Point x0 to be a Unique Local Min: H(x0) > 0

Contrawise, if the Hessian is negative definite, then all local excursions of x away from x0

decrease the value of `(x) and thus

Suff. Cond. for Stationary Point x0 to be a Unique Local Max: H(x0) < 0

If the Hessian H(x0) is full rank and indefinite at a stationary point x0, then x0 is a
saddle point. If H(x0) ≥ 0 then x0 is a non-unique local minimum. If H(x0) ≤ 0 then x0

is a non-unique local maximum.
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Application to Linear Gaussian Model – Cont.

Note that the scalar loss function

`(x)
.

= ‖y − Ax‖2
w = (y − Ax)TW (y − Ax) = yTWy − 2yTWAx + xTATWAx

has an exact quadratic expansion. Thus the arguments given in the previous slide hold
for arbitrarily large (global) excursions away from a stationary point x0. In particular, if
H is positive definite, the stationary point x0 must be a unique global minimum.

Having shown that

∂`(x)

∂x
= −2(y − Ax)TWA = 2xTATWA− 2yTWA

we determine the Hessian to be

H(x) =
∂

∂x

(
∂`

∂x

)T

= 2ATWA ≥ 0

Therefore stationary points (which, as we have seen, necessarily satisfy the normal
equation) are global minima of `(x). Furthermore, if A is one-to-one (has full column
rank), then H(x) = 2ATWA > 0 and there is only one unique stationary point (i.e.,
weighted least-squares solution) which minimizes `(x). Of course this could not be
otherwise, as we know from our previous analysis of the weighted least-squares problem
using Hilbert space theory.
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The Gradient of an Objective Function `(x)

Note that d`(x) = ∂`(x)
∂x

dx or, setting ˙̀ = d`/dt and v = ẋ = dx/dt,

˙̀(v ; x) =
∂`(x)

∂x
v =

∂`(x)

∂x
Ω−1

x Ωxv =

[
Ω−1

x

(
∂`(x)

∂x

)T
]T

Ωxv = 〈∇x`(x), v〉

with the Gradient of `(x) defined by

∇x`(x) , Ω−1
x

(
∂`(x)

∂x

)T

= Ω−1
x


∂`(x)
∂x1

...
∂`(x)
∂xn


with Ωx a local Riemannian metric. Note that ˙̀(v ; x) = 〈∇x`(x), v〉 is a linear
functional of the velocity vector v = ẋ .

In the vector space structure we have seen to date Ωx is independent of x , Ωx = Ω, and
represents the metric of the (globally) defined metric space containing x . Furthermore, if
Ω = I , then the space is a (globally) Cartesian vector space. When considering spaces of
smoothly parameterized “regular family” probability density functions, a natural
Riemannian (local, non-Cartesian) metric is provided by the Fisher Information Matrix to
be discussed later in this course.
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The Gradient as the Direction of Steepest Ascent

What unit velocities, ‖v‖ = 1, in the domain space X result in the fastest rate of change
of `(x) at the point x as measured by | ˙̀(v ; x)|?

Equivalently, What unit velocity directions v in the domain space X result in the fastest
rate of change of `(x) as measured by | ˙̀(v ; x)|?

From the Cauchy-Schwarz inequality, we have

| ˙̀(v ; x)| = |〈∇x`(x), v〉| ≤ ‖∇x`(x)‖ ‖v‖ = ‖∇x`(x)‖

or
−‖∇x`(x)‖ ≤ ˙̀(v ; x) ≤ ‖∇x`(x)‖

Note that

v = c∇x`(x) with c = ‖∇x`(x)‖−1 ⇐⇒ ˙̀(v) = ‖∇x`(x)‖

∇x`(x) = direction of steepest ascent.

v = −c∇x`(x) with c = ‖∇x`(x)‖−1 ⇐⇒ ˙̀(v) = −‖∇x`(x)‖

−∇x`(x) = direction of steepest descent.
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The Cartesian or “Standard” Gradient

In a Cartesian vector space the gradient of a cost function `(x) corresponds to taking Ω = I , in
which case we have the Cartesian gradient

∇c
x `(x) =

(
∂`(x)

∂x

)T

=


∂`(x)
∂x1

...
∂`(x)
∂xn


Often one naively assumes that the gradient takes this form even if it is not evident that the
space is, in fact, Cartesian. In this case one might more accurately refer to the gradient shown as
the standard gradient. Because the Cartesian gradient is the standard form assumed in many
applications, it is common to just refer to it as the gradient, even if it is not the the correct, true
gradient. (Assuming that we agree that the true gradient must give the direction of steepest
descent and therefore depends on the metric Ωx .)

This is the terminology adhered to by Amari and his colleagues, who then refer to the true
Riemannian metric-dependent gradient as the natural gradient. As mentioned earlier, when
considering spaces of smoothly parameterized “regular family” probability density functions, a
natural Riemannian metric is provided by the Fisher Information Matrix. Amari is one of the first
researchers to consider parametric estimation from this Information Geometry perspective. He
has argued that the use of the natural (true) gradient can significantly improve the performance
of statistical learning algorithms.
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Continuous Dynamic Minimization of `(x)

Let `(·) : X = Rn → R be twice differentiable with respect to x ∈ Rn and bounded from

below by 0, `(x) ≥ 0 for all x . Recalling that ˙̀(x) = ∂`(x)
∂x ẋ , set

ẋ = −Q(x)∇c
x`(x) with ∇c

x`(x) =

(
∂`(x)

∂x

)T

= Cartesian Gradient of `(x)

with Q(x) = Q(x)T > 0 for all x . This yields

˙̀(x) = −‖∇c
x`(x)‖2

Q(x) ≤ 0

with
˙̀(x) = 0 if and only if ∇c

x`(x) = 0

Thus continuously evolving the value of x according to ẋ = −Q(x)∇c
x`(x) ensures that

the cost `(x) dynamically decreases in value until a stationary point turns off learning.
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Generalized Gradient Descent Algorithm

A family of algorithms for discrete-step dynamic minimization of `(x) can be developed
as follows.

Setting xk = x(tk), approximate ẋk = ẋ(tk) by the first-order forward difference

ẋk ≈
xk+1 − xk
tk+1 − tk

This yields
xk+1 ≈ xk + αk ẋk with αk = tk+1 − tk

which suggests the Generalized Gradient Descent Algorithm

x̂k+1 = x̂k − αkQ(x̂k)∇c
x`(x̂k)

A vast body of literature in Mathematical Optimization Theory (aka Mathematical
Programming) exists which gives conditions on step size αk to guarantee that a
generalized gradient descent algorithm will converge to a stationary value of `(x)
for various choices of Q(x) = Q(x)T > 0.

Note that a Generalized Gradient Algorithm turns off once the sequence of estimates has
converged to a stationary point of `(x): x̂k → x̂ with ∇c

x`(x̂) = 0.
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Generalized Gradient Descent Algorithm – Cont.

IMPORTANT SPECIAL CASES:

Q(x) = I Gradient Descent Algorithm

Q(x) = H−1(x) Newton Algorithm

Q(x) = Ω−1
x General Gradient Algorithm

The (Cartesian or “naive”) Gradient Descent Algorithm is simplest to
implement, but slowest to converge.

The Newton Algorithm is most difficult to implement, due to the difficulty in
constructing and inverting the Hessian, but fastest to converge.

The General (or true) Gradient Descent Algorithm provides improved
convergence speed over (naive) gradient descent when Ωx 6= I . It is also
known as the Natural Gradient Algorithm, after Amari.
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Derivation of the Newton Algorithm

A Taylor series expansion of `(x) about a current estimate of a minimizing point
x̂k to second-order in ∆x = x − x̂k yields

`(x̂k + ∆x) ≈ `(x̂k) +
∂`(x̂k)

∂x
∆x +

1

2
∆xTH(x0)∆x

Minimizing the above wrt ∆x results in

∆̂xk = −H−1(x̂k)∇c
x`(x̂k)

Finally, updating the estimate of the minimizing point via

x̂k+1 = x̂k + αk∆̂xk = x̂k+1 = x̂k − αkH−1(x̂k)∇c
x`(x̂k)

yields the Newton Algorithm.

As mentioned, the Newton Algorithm generally yields fast convergence. This is
particularly true if it can be stabilized using the so-called Newton step-size
αk = 1.
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Nonlinear Least-Squares

For the Linear Gaussian model, with known covariance matrix C = W−1, the
negative log-likelihood, `(x) = − log px(y), becomes equivalent to the (weighted)

Nonlinear Least-Squares Loss Function:

`(x)
.

= ‖y − h(x)‖2
W

The (Cartesian) gradient is given by ∇c
x`(x) =

(
∂`(x)
∂x

)T
, or

∇c
x`(x) = −HT (x)W (y − h(x))

where H(x) is the Jacobian (linearization) of h(x)

H(x) =
∂h(x)

∂x

This yields the Nonlinear Least-Squares Generalized Gradient Descent Algorithm:

x̂k+1 = x̂k + αkQ(x̂k)HT (x̂k) (y − h(x̂k))
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Nonlinear Least-Squares – Cont.

Note that the Natural (true) gradient of `(x) is given by

∇x`(x) = −Ω−1
x HT (x)W (y − h(x)) = −H∗(x) (y − h(x))

where H∗(x) = Ω−1
x HT (x)W is the adjoint of the matrix H(x).

A stationary point x , ∇x`(x) = 0, must satisfy the Nonlinear Normal Equation

H∗(x)h(x) = H∗(x)y

and the prediction error e(x) = y − h(x) must be in N (H∗(x)) = R(H(x))⊥

H∗(x)e(x) = H∗(x) (y − h(x)) = 0

Provided that the step size αk is chosen to stabilize the nonlinear least-squares
generalized gradient descent algorithm, the sequence of estimates x̂k will converge
to a stationary point of `(x), x̂k → x̂ with ∇x`(x̂) = 0 = ∇c

x`(x̂).
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Nonlinear Least-Squares – Cont.

IMPLEMENTING THE NEWTON ALGORITHM

One computes the Hessian from

H(x) =
∂

∂x

(
∂`(x)

∂x

)T

=
∂

∂x
∇c

x`(x)

This yields the Hessian for the Weighted Least-Squares Loss Function:

H(x) = HT (x)WH(x)−
m∑

i=1

Hi (x) [W (y − h(x))]i

where

Hi (x) ,
∂

∂x

(
∂hi (x)

∂x

)T

denotes the Hessian of the the i-th scalar-valued component of the vector function h(x).

Note that all terms on the right-hand-side of of the Hessian expression are symmetric, as
required if H(x) is to be symmetric.
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Nonlinear Least-Squares – Cont.

Evidently, the Hessian matrix of the least-squares loss function `(x) can be quite
complex. Also note that because of the second term on the right-hand-side of the
Hessian expression, H(x) can become singular or indefinite.

In the special case when h(x) is linear, h(x) = Hx , we have that H(x) = H and
∂Hi (x)
∂x

= 0, i = 1, · · · n, yielding,

H(x) = HTWH ,

which for full column-rank A and positive definite W is always symmetric and
invertible.

Also note that if we have a good model and a value x̂ such that the prediction error
e(x̂) = y − h(x̂) ≈ 0, then

H(x̂) ≈ HT (x̂)WH(x̂)

where the right hand side is positive definite for positive definite W if h(x) is locally
one-to-one about the point x̂ .
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Nonlinear Least-Squares – Gauss-Newton Algorithm

Linearizing h(x) about a current estimate x̂k with ∆x = x − x̂k we have

h(x) = h(x̂k + ∆x) ≈ h(x̂k) +
∂

∂x
h(x̂k)∆x = h(x̂k) + H(x̂k)∆x

This yields the loss-function approximation

`(x) = `(x̂k + ∆x) ≈ 1

2
‖ (y − h(x̂k))− H(x̂k)∆x‖2

W

Assuming that H(x̂k) has full column rank (which is guaranteed if h(x) is
one-to-one in a neighborhood of x̂k), then we can uniquely minimize `(x̂k + ∆x)
wrt ∆x to obtain

∆̂xk =
(
HT (x̂k)WH(x̂k)

)−1
HT (x̂k)W (y − h(x̂k))

The update rule x̂k+1 = x̂k + αk∆̂xk yields the a nonlinear least-squares
generalized gradient descent algorithm known as the Gauss-Newton Algorithm.
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Gauss-Newton Algorithm – Cont.

The Gauss-Newton algorithm corresponds to taking the weighting matrix
Q(x) = QT (x) > 0 in the nonlinear least-squares generalized gradient descent
algorithm to be (under the assumption that h(x) is locally one-to-one)

Q(x) =

(
HT (x)WH(x)

)−1

Gauss-Newton Algorithm

Note that when e(x) = y − h(x) ≈ 0, the Newton and Gauss-Newton
algorithms become essentially equivalent.

Thus it is not surprising that the Gauss-Newton algorithm can result in very
fast convergence, assuming that e(x̂k) becomes asymptotically small.

This is particularly true if the Gauss-Newton algorithm can be stabilized using
the Newton step-size αk = 1.

Straightforward modifications of Q(x) yield the Levenberg Algorithm and
the Levenberg–Marquardt Algorithm, both of which can have improved
convergence relative to the Gauss-Newton Algorithm.
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